PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additive Model

نویسنده

  • Taiji Suzuki
چکیده

We develop a PAC-Bayesian bound for the convergence rate of a Bayesian variant of Multiple Kernel Learning (MKL) that is an estimation method for the sparse additive model. Standard analyses for MKL require a strong condition on the design analogous to the restricted eigenvalue condition for the analysis of Lasso and Dantzig selector. In this paper, we apply PAC-Bayesian technique to show that the Bayesian variant of MKL achieves the optimal convergence rate without such strong conditions on the design. Basically our approach is a combination of PAC-Bayes and recently developed theories of non-parametric Gaussian process regressions. Our bound is developed in a fixed design situation. Our analysis includes the existing result of Gaussian process as a special case and the proof is much simpler by virtue of PAC-Bayesian technique. We also give the convergence rate of the Bayesian variant of Group Lasso as a finite dimensional special case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Gaussian process models : PAC-Bayesian generalisation error bounds and sparse approximations

Non-parametric models and techniques enjoy a growing popularity in the field of machine learning, and among these Bayesian inference for Gaussian process (GP) models has recently received significant attention. We feel that GP priors should be part of the standard toolbox for constructing models relevant to machine learning in the same way as parametric linear models are, and the results in thi...

متن کامل

Additive Gaussian Processes

We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesia...

متن کامل

A Kernel Approach to Tractable Bayesian Nonparametrics

Inference in popular nonparametric Bayesian models typically relies on sampling or other approximations. This paper presents a general methodology for constructing novel tractable nonparametric Bayesian methods by applying the kernel trick to inference in a parametric Bayesian model. For example, Gaussian process regression can be derived this way from Bayesian linear regression. Despite the su...

متن کامل

Multiple Gaussian Process Models

We consider a Gaussian process formulation of the multiple kernel learning problem. The goal is to select the convex combination of kernel matrices that best explains the data and by doing so improve the generalisation on unseen data. Sparsity in the kernel weights is obtained by adopting a hierarchical Bayesian approach: Gaussian process priors are imposed over the latent functions and general...

متن کامل

Gaussian Processes for Machine Learning

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received growing attention in the machine learning community over the past decade. The book provides a long-needed, systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012